Chromosomes trapped in micronuclei are liable to segregation errors

困在微核中的染色体容易发生分离错误

阅读:5
作者:Mar Soto, Iraia García-Santisteban, Lenno Krenning, René H Medema, Jonne A Raaijmakers

Abstract

DNA in micronuclei is likely to get damaged. When shattered DNA from micronuclei gets reincorporated into the primary nucleus, aberrant rearrangements can take place, a phenomenon referred to as chromothripsis. Here, we investigated how chromatids from micronuclei act in subsequent divisions and how this affects their fate. We observed that the majority of chromatids derived from micronuclei fail to establish a proper kinetochore in mitosis, which is associated with problems in chromosome alignment, segregation and spindle assembly checkpoint activation. Remarkably, we found that, upon their formation, micronuclei already display decreased levels of important kinetochore assembly factors. Importantly, these defects favour the exclusion of the micronucleus over the reintegration into the primary nucleus over several divisions. Interestingly, the defects observed in micronuclei are likely overcome once micronuclei are reincorporated into the primary nuclei, as they further propagate normally. We conclude that the formation of a separate small nuclear entity represents a mechanism for the cell to delay the stable propagation of excess chromosome(s) and/or damaged DNA, by inducing kinetochore defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。