MicroRNA-34b mediates hippocampal astrocyte apoptosis in a rat model of recurrent seizures

MicroRNA-34b 介导复发性癫痫大鼠模型中海马星形胶质细胞凋亡

阅读:8
作者:Liqun Liu, Lingjuan Liu, Jiayun Shi, Menglin Tan, Jie Xiong, Xingfang Li, Qingpeng Hu, Zhuwen Yi, Ding'an Mao

Background

Recurrent convulsions can cause irreversible astrocyte death, impede neuron regeneration, and further aggravate brain damage. MicroRNAs have been revealed as players in the progression of numerous diseases including cancer and Alzheimer's disease. Particularly, microRNA has been found linked to seizure-induced neuronal death. In this study, a rat model of recurrent convulsions induced by flurothyl treatments was utilised to assess the alterations of microRNA expressions in hippocampus tissues. We also applied an in vitro model in which primary astrocytes were exposed to kainic acid to verify the targets of miR-34b-5p identified in the animal model.

Conclusion

Our findings prove microRNAs play a role in mediating recurrent convulsions-induced astrocyte death and further indicate that miR-34b-5p could acts as a regulator for astrocyte apoptosis induced by recurrent seizures.

Results

We discovered that miR-34b-5p, a member of the miR-34 family, increased significantly in flurothyl-treated rat hippocampus tissue. More surprisingly, this upregulation occurred concurrently with accumulating astrocyte apoptosis, indicating the involvement of miR-34b-5p in seizures caused astrocyte apoptosis. Results from the in vitro experiments further demonstrated that miR-34b-5p directly targeted Bcl-2 mRNA, translationally repressed Bcl-2 protein, and thus modulated cell apoptosis by influencing Bcl-2, Bax, and Caspase-3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。