Metabolomic mechanisms of gypenoside against liver fibrosis in rats: An integrative analysis of proteomics and metabolomics data

绞股蓝皂苷抗大鼠肝纤维化的代谢组学机制:蛋白质组学和代谢组学数据的整合分析

阅读:4
作者:Ya-Nan Song, Shu Dong, Bin Wei, Ping Liu, Yong-Yu Zhang, Shi-Bing Su

Aims

To investigate mechanisms and altered pathways of gypenoside against carbon tetrachloride (CCl4)-induced liver fibrosis based on integrative analysis of proteomics and metabolomics data.

Conclusions

Gypenoside inhibited CCl4-induced liver fibrosis, which may be involved in the alteration of glycolysis metabolism and the protection against the damage of aldehydes and lipid peroxidation by up-regulating ALDH.

Methods

CCl4-induced liver fibrosis rats were administrated gypenoside. The anti-fibrosis effects were evaluated by histomorphology and liver hydroxyproline (Hyp) content. Protein profiling and metabolite profiling of rats liver tissues were examined by isobaric tags for relative and absolute quantitation (iTRAQ) approach and gas chromatography-mass spectrometer (GC-MS) technology. Altered pathways and pivotal proteins and metabolites were searched by integrative analysis of proteomics and metabolomics data. The levels of some key proteins in altered pathways were determined by western blot.

Results

Histopathological changes and Hyp content in gypenoside group had significant improvements (P<0.05). Compared to liver fibrosis model group, we found 301 up-regulated and 296 down-regulated proteins, and 9 up-regulated and 8 down-regulated metabolites in gypenoside group. According to integrative analysis, some important pathways were found, including glycolysis or gluconeogenesis, fructose and mannose metabolism, glycine, serine and threonine metabolism, lysine degradation, arginine and proline metabolism, glutathione metabolism, and sulfur metabolism. Furthermore, the levels of ALDH1B1, ALDH2 and ALDH7A1 were found increased and restored to normal levels after gypenoside treated (P<0.05). Conclusions: Gypenoside inhibited CCl4-induced liver fibrosis, which may be involved in the alteration of glycolysis metabolism and the protection against the damage of aldehydes and lipid peroxidation by up-regulating ALDH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。