Potentiation of PD-L1 blockade with a potency-matched dual cytokine-antibody fusion protein leads to cancer eradication in BALB/c-derived tumors but not in other mouse strains

使用效力匹配的双细胞因子抗体融合蛋白增强 PD-L1 阻断可消除 BALB/c 衍生肿瘤中的癌症,但不会消除其他小鼠品系中的癌症

阅读:16
作者:Roberto De Luca, Dario Neri

Abstract

We have recently described a novel therapeutic antibody product (IL2-F8-TNFmut), featuring the simultaneous fusion of murine IL2 and of a TNF mutant with scFv(F8), an antibody specific to the alternatively-spliced extra domain A of fibronectin (EDA). Here, we report on the in vivo characterization of the anti-cancer activity of IL2-F8-TNFmut in four immunocompetent murine models of cancer, CT26, WEHI-164, F9 teratocarcinoma and Lewis lung carcinoma (LLC), using the product alone or in combination with a monoclonal antibody specific to murine PD-L1. All four models exhibited a strong expression of EDA-fibronectin, which was confined to vascular structures for F9 tumors, while the other three malignancies exhibited a more stromal pattern of staining. A complete and long-lasting tumor eradication of CT26 and WEHI-164 tumors was observed in BALB/c mice when IL2-F8-TNFmut was used in combination with PD-L1 blockade. The combination treatment led to improved tumor growth inhibition in 129/SvEv mice bearing murine teratocarcinoma or in C57BL/6 mice bearing murine LLC, but those cancer cures were difficult to achieve in those models. A microscopic analysis of tumor sections, obtained 24 h after pharmacological treatment, revealed that the PD-L1 antibody had homogenously reached tumor cells in vivo and that the combination of PD-L1 blockade with IL2-F8-TNFmut stimulated an influx of NK cells and of T cells into the neoplastic mass. These data indicate that potency-matched dual-cytokine fusion proteins may be ideally suited to potentiate the therapeutic activity of immune check-point inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。