Immunohistochemical expressions of adropin and ınducible nitric oxide synthase in renal tissues of rats with streptozotocin-ınduced experimental diabetes

链脲佐菌素诱发的实验性糖尿病大鼠肾脏组织中阿托品及诱导型一氧化氮合酶的免疫组织化学表达

阅读:14
作者:T Kuloglu, S Aydin

Abstract

Diabetes is characterized by high blood glucose levels; it occurs in 30-35% of the population. Elevated glucose levels can damage a number of organs, including the kidneys. Several peptide hormones participate in maintaining glucose homeostasis including the recently discovered "adropin," a 42 amino acid peptide hormone. Adropin also alters inducible nitric oxide synthase (iNOS) expression. Therefore, we studied how adropin and iNOS expression is altered in the renal tissues of streptozotocin (STZ) induced diabetic rats. Seven sham, seven control and seven Wistar albino male rats were fed standard rat pellets and water ad libitum for 10 weeks. The rats in the diabetic group were injected i.p. with a single dose of 60 mg/kg STZ dissolved in 0.1 M phosphate-citrate buffer, pH 4.5. After the 10-week experimental period, the rats in both groups were anesthetized and decapitated. Kidney tissues were excised and placed in 10% formaldehyde solution, taken through routine histological procedures, and embedded in paraffin. Sections 5-6 μm thick were stained immunohistochemically using the avidin-biotin complex (ABC) method. Adropin and iNOS immunoreactivity were co-localized in the glomeruli, peritubular interstitial cells and peritubular capillary endothelium of the cortex; the thin limb of the loop of Henle in the medulla; and medullary peritubular interstitial cells and endothelium of the peritubular capillaries in both the control and diabetic groups. The intensities of adropin and iNOS immunoreactivity increased with the severity of the diabetes. Intense adropin immunoreactivity was detected in both the smooth muscle and human small intestine Paneth cells that were used as positive controls. The elevated levels of adropin and iNOS in the kidney indicates that these substances are involved in the pathophysiology of diabetes; this constitutes a compensatory mechanism against the damage inflicted by the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。