ASSERT: A Platform Technology for Rapid Electrochemical Sensing of Soil Ammonium

ASSERT:一种快速电化学传感土壤氨的平台技术

阅读:6
作者:Mohammed A Eldeeb, Vikram Narayanan Dhamu, Anirban Paul, Firas Maqsood Alam, E Natalie Burgos, Sriram Muthukumar, Shalini Prasad

Abstract

The world is facing a food shortage predicament largely fueled by inefficient, outdated farming conventions that are passed down from generation to generation. Overfertilization is one of the major byproducts of inadequate farming techniques. This leads to an imbalance in the soil ecosystem, affecting carbon sequestration, plant-available nutrients, and microorganisms. Sustainable agriculture, on the other hand, efficiently uses the soil with minimal fertilizer and crop rotation to prevent soil erosion. This method requires real-time information on the soil's health. An electrochemical ion-selective electrode (ISE) is presented to measure soil ammonium in situ. The sensor utilized electrochemical impedance spectroscopy for direct, continuous soil ammonium measurement without any soil pretreatment. The ISE is applied by drop-casting onto the working electrode. The sensor response was calibrated against the three main different soil textures (clay, sandy loam, and loamy clay) to cover the entirety of the soil texture triangle. The linear regression models showed an ammonium-dependent response with Pearson r > 0.991 for the various soil textures in the range of 2-32 ppm. The sensor response was validated against the gold standard spectrophotometric method after KCl extraction showed a less than 20% error rate between the measured ammonium and reference ammonium. A 16 day in situ soil study showed the capability of the sensor to measure soil ammonium in a temporally dynamic manner with a coefficient of variance of 11%, showing robust stability for in situ monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。