Brain border-derived CXCL2+ neutrophils drive NET formation and impair vascular reperfusion following ischemic stroke

脑边界来源的CXCL2+中性粒细胞驱动NET形成,并损害缺血性卒中后的血管再灌注。

阅读:1
作者:Tingting Huang ,Yunlu Guo ,Wanqing Xie ,Jiemin Yin ,Yueman Zhang ,Weijie Chen ,Dan Huang ,Peiying Li

Abstract

Background: The brain border compartments harbor a diverse population of immune cells and serve as invasion sites for leukocyte influx into the brain following CNS injury. However, how brain-border myeloid cells affect stroke pathology remains poorly characterized. Methods and results: Here, we showed that ischemic stroke-induced expansion of CXCL2+ neutrophils, which exhibit highly proinflammatory features. We tracked CXCL2+ neutrophils in vivo by utilizing a photoconvertible Kik-GR mouse (fluorescent proteins Kikume Green Red, Kik-GR) and found that brain-infiltrating CXCL2+ neutrophils following ischemic stroke were mainly derived from the brain border rather than the periphery. We demonstrated that CXCL2 neutralization inhibited the formation and releasing of neutrophil extracellular traps (NETs) from in vitro cultured primary neutrophils. Furthermore, CXCL2-neutralizing antibody treatment reduced brain infarcts and improved vascular reperfusion at day 3 postischemic stroke. Conclusions: Collectively, brain border-derived CXCL2+ neutrophil expansion may impair vascular reperfusion by releasing NETs following ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。