DMPE-PEG scaffold binding with TGF-β1 receptor enhances cardiomyogenic differentiation of adipose-derived stem cells

DMPE-PEG 支架与 TGF-β1 受体结合增强脂肪干细胞的心肌形成分化

阅读:5
作者:Fei Zhang, Yuan Xie, Yuhao Bian

Background

Heart failure has become a global health problem with increasing incidences worldwide. Traditional pharmacological treatments can delay but cannot reverse the underlying disease processes. The clinical application of myocardial tissue engineering represents a promising strategy because it features cell-based replacement therapies that replace partially or fully damaged cardiac tissues with in vitro-generated tissue equivalents. However, the effectiveness of this therapy is limited by poor viability and differentiation of the grafted cells. This limitation could be overcome by rapidly increasing the numbers of functional cardiomyocytes. In this study, we aimed to obtain functional myocardial tissue engineering seed cells with high proliferation and differentiation rates by combining 1,2-dimyristoyl-sn-glycero-3-phosphoethan-olamine-polyethylene glycol (DMPE-PEG) and recombinant transforming growth factor-β1 receptor I (rTGF-β1 RI), followed by binding to human adipose-derived stromal cells (hADSCs).

Conclusion

Our findings provide new insights into stem cell transplantation therapy in myocardial tissue engineering.

Methods

To induce higher expression level of TGF-β1 RI, DMPE-PEG was inoculated with rTGF-β1 RI to modify the surface of hADSCs. The differentiation ability and morphological characteristics of the modified hADSCs were examined in vitro and in vivo.

Results

The caridiomyocartic differentiation ability of TGF-β1 RI-modified hADSCs was significantly enhanced, as indicated by elevated expression levels of the cardiac markers cardiac troponin T (cTnT) and α-smooth muscle actin (SMA) via increased phosphorylation of the Smad signaling pathway-related proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。