β2 nAChR Activation on VTA DA Neurons Is Sufficient for Nicotine Reinforcement in Rats

腹侧被盖区 DA 神经元上的 β2 nAChR 激活足以增强大鼠的尼古丁

阅读:14
作者:Noah B Walker, Yijin Yan, Melissa A Tapia, Brenton R Tucker, Leanne N Thomas, Brianna E George, Alyssa M West, Christopher B Marotta, Henry A Lester, Dennis A Dougherty, Katherine M Holleran, Sara R Jones, Ryan M Drenan

Abstract

Mesolimbic nicotinic acetylcholine receptor (nAChRs) activation is necessary for nicotine reinforcement behavior, but it is unknown whether selective activation of nAChRs in the dopamine (DA) reward pathway is sufficient to support nicotine reinforcement. In this study, we tested the hypothesis that activation of β2-containing (β2*) nAChRs on VTA neurons is sufficient for intravenous nicotine self-administration (SA). We expressed β2 nAChR subunits with enhanced sensitivity to nicotine (referred to as β2Leu9'Ser) in the VTA of male Sprague Dawley (SD) rats, enabling very low concentrations of nicotine to selectively activate β2* nAChRs on transduced neurons. Rats expressing β2Leu9'Ser subunits acquired nicotine SA at 1.5 μg/kg/infusion, a dose too low to support acquisition in control rats. Saline substitution extinguished responding for 1.5 μg/kg/inf, verifying that this dose was reinforcing. β2Leu9'Ser nAChRs also supported acquisition at the typical training dose in rats (30 μg/kg/inf) and reducing the dose to 1.5 μg/kg/inf caused a significant increase in the rate of nicotine SA. Viral expression of β2Leu9'Ser subunits only in VTA DA neurons (via TH-Cre rats) also enabled acquisition of nicotine SA at 1.5 μg/kg/inf, and saline substitution significantly attenuated responding. Next, we examined electrically-evoked DA release in slices from β2Leu9'Ser rats with a history of nicotine SA. Single-pulse evoked DA release and DA uptake rate were reduced in β2Leu9'Ser NAc slices, but relative increases in DA following a train of stimuli were preserved. These results are the first to report that β2* nAChR activation on VTA neurons is sufficient for nicotine reinforcement in rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。