Dual Cre and Dre recombinases mediate synchronized lineage tracing and cell subset ablation in vivo

双重Cre和Dre重组酶介导体内同步谱系追踪和细胞亚群消融。

阅读:1
作者:Haixiao Wang ,Lingjuan He ,Yan Li ,Wenjuan Pu ,Shaohua Zhang ,Ximeng Han ,Kathy O Lui ,Bin Zhou

Abstract

Genetic technology using site-specific recombinases, such as the Cre-loxP system, has been widely employed for labeling specific cell populations and for studying their functions in vivo. To enhance the precision of cell lineage tracing and functional study, a similar site-specific recombinase system termed Dre-rox has been recently used in combination with Cre-loxP. To enable more specific cell lineage tracing and ablation through dual recombinase activity, we generated two mouse lines that render Dre- or Dre+Cre-mediated recombination to excise a stop codon sequence that prevents the expression of diphtheria toxin receptor (DTR) knocked into the ubiquitously expressed and safe Rosa26 locus. Using different Dre- and Cre-expressing mouse lines, we showed that the surrogate gene reporters tdTomato and DTR were simultaneously expressed in target cells and in their descendants, and we observed efficient ablation of tdTomato+ cells after diphtheria toxin administration. These mouse lines were used to simultaneously trace and deplete the target cells of interest through the inducible expression of a reporter and DTR using dual Cre and Dre recombinases, allowing a more precise and efficient study of the role of specific cell subsets within a heterogeneous population in pathophysiological conditions in vivo. Keywords: Cre-loxP; DTR; Dre-rox; cell ablation; dual recombinases; lineage tracing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。