A structure-redesigned intrinsically disordered peptide that selectively inhibits a plant transcription factor in jasmonate signaling

结构重新设计的内在无序肽,可选择性抑制茉莉酸信号传导中的植物转录因子

阅读:5
作者:Yousuke Takaoka, Ruiqi Liu, Minoru Ueda

Abstract

Plant hormone-related transcription factors (TFs) are key regulators of plant development, responses to environmental stress such as climate changes, pathogens, and pests. These TFs often function as families that exhibit genetic redundancy in higher plants, and are affected by complex crosstalk mechanisms between different plant hormones. These properties make it difficult to analyze and control them in many cases. In this study, we introduced a chemical inhibitor to manipulate plant hormone-related TFs, focusing on the jasmonate (JA) and ethylene (ET) signaling pathways, with the key TFs MYC2/3/4 and EIN3/EIL1. This study revealed that JAZ10CMID, the binding domain of the repressor involved in the desensitization of both TFs, is an intrinsically disordered region in the absence of binding partners. Chemical inhibitors have been designed based on this interaction to selectively inhibit MYC TFs while leaving EIN3/EIL1 unaffected. This peptide inhibitor effectively disrupts MYC-mediated responses while activating EIN3-mediated responses and successfully uncouples the crosstalk between JA and ET signaling in Arabidopsis thaliana. Furthermore, the designed peptide inhibitor was also shown to selectively inhibit the activity of MpMYC, an ortholog of AtMYC in Marchantia polymorpha, demonstrating its applicability across different plant species. This underscores the potential of using peptide inhibitors for specific TFs to elucidate hormone crosstalk mechanisms in non-model plants without genetic manipulation. Such a design concept for chemical fixation of the disordered structure is expected to limit the original multiple binding partners and provide useful chemical tools in chemical biology research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。