Screening for biomarkers of tuberous sclerosis complex-associated epilepsy: a bioinformatics analysis

结节性硬化症相关癫痫的生物标志物筛查:生物信息学分析

阅读:11
作者:Yongsheng Sun, Haonan Ji, Liqin Xu, Ruiyin Gu, Pasquale Striano, Gavin P Winston, Bin Li, Hui Zhou

Background

The optimal biomarkers for early diagnosis, treatment, and prognosis of tuberous sclerosis complex (TSC)-associated epilepsy are not yet clear. This study identifies the crucial genes involved in the pathophysiology of TSC-associated epilepsy via a bioinformatics analysis. These genes may serve as novel therapeutic targets.

Conclusions

The discovery of these crucial genes and signaling pathways extends understanding of the molecular processes underlying the development of TSC-associated epilepsy. Additionally, our findings may provide a theoretical basis for research into targeted clinical treatments.

Methods

Gene chip data sets (GSE62019 and GSE16969) comprising the data of patients with TSC-associated epilepsy and healthy control participants were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in the GEO database were identified using the GEO2R gene expression analysis tool. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Ontology function, and protein-protein interaction (PPI) network analyses were then conducted. The

Results

The intersection of the GSE62019 and GSE16969 data sets revealed 151 commonly upregulated DEGs. The KEGG enrichment analysis indicated that these DEGs affected the occurrence and development of TSC-associated epilepsy by modulating complement and coagulation cascades, glycosaminoglycans in cancer, and extracellular matrix-receptor interactions. Four high-scoring clusters emerged, and podoplanin (PDPN) was identified as a key gene through the construction of a PPI network of the common DEGs using the Cytoscape software. A GSEA of the DEGs revealed that the common DEG PDPN was enriched in both data sets in pathways related to platelet activation, aggregation, and the glycoprotein VI (GPVI)-mediated activation cascade. Immunohistochemical staining revealed a significant elevation in PDPN expression in the cerebral cortex of mice with TSC-associated epilepsy. Conversely, the control group mice did not display any significantly positive neurons. Conclusions: The discovery of these crucial genes and signaling pathways extends understanding of the molecular processes underlying the development of TSC-associated epilepsy. Additionally, our findings may provide a theoretical basis for research into targeted clinical treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。