LncRNA GAS5 as an Inflammatory Regulator Acting through Pathway in Human Lupus

LncRNA GAS5 作为炎症调节剂通过人类狼疮通路发挥作用

阅读:17
作者:Jianping Xiao, Deguang Wang

Aim

To investigate the contribution of GAS5 in the pathogenesis of SLE. Background: Systemic Lupus Erythematosus (SLE) is characterized by aberrant activity of the immune system, leading to variable clinical symptoms. The etiology of SLE is multifactor, and growing evidence has shown that long noncoding RNAs (lncRNAs) are related to human SLE. Recently, lncRNA growth arrest-specific transcript 5 (GAS5) has been reported to be associated with SLE. However, the mechanism between GAS5 and SLE is still unknown. Objective: Find the specific mechanism of action of lncRNA GAS5 in SLE.

Background

Systemic Lupus Erythematosus (SLE) is characterized by aberrant activity of the immune system, leading to variable clinical symptoms. The etiology of SLE is multifactor, and growing evidence has shown that long noncoding RNAs (lncRNAs) are related to human SLE. Recently, lncRNA growth arrest-specific transcript 5 (GAS5) has been reported to be associated with SLE. However, the mechanism between GAS5 and SLE is still unknown.

Conclusion

In general, the decreased GAS5 expression may be a potential contributor to the elevated production of a great number of cytokines and chemokines in SLE patients. And our research suggests that GAS5 contributes a regulatory role in the pathogenesis of SLE, and may provide a potential target for therapeutic intervention.

Methods

Collecting samples of the SLE patients, Cell culture and treatment, Plasmid construction, and transfection, Quantitative real-time PCR analysis, Enzyme-linked immunosorbent assay (ELISA), Cell viability analysis, Cell apoptosis analysis, Western blot.

Objective

Find the specific mechanism of action of lncRNA GAS5 in SLE.

Results

In this research, we investigated the contribution of GAS5 in the pathogenesis of SLE. We confirmed that, compared to healthy people, the expression of GAS5 was significantly decreased in peripheral monocytes of SLE patients. Subsequently, we found that GAS5 can inhibit the proliferation and promote the apoptosis of monocytes by over-expressing or knocking down the expression of GAS5. Additionally, the expression of GAS5 was suppressed by LPS. Silencing GAS5 significantly increased the expression of a group of chemokines and cytokines, including IL-1β, IL-6, and THFα, which were induced by LPS. Furthermore, it was identified the involvement of GAS5 in the TLR4-mediated inflammatory process was through affecting the activation of the MAPK signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。