Large-Area Transfer of 2D TMDCs Assisted by a Water-Soluble Layer for Potential Device Applications

水溶性层辅助大面积转移二维TMDCs 以用于潜在的器件应用

阅读:6
作者:Madan Sharma, Aditya Singh, Pallavi Aggarwal, Rajendra Singh

Abstract

Layer transfer offers enormous potential for the industrial implementation of two-dimensional (2D) material technology platforms. However, the transfer method used must retain the as-grown uniformity and cleanliness in the transferred films for the fabrication of 2D material-based devices. Additionally, the method used must be capable of large-area transfer to maintain wafer-scale fabrication standards. Here, a facile route to transfer centimeter-scale synthesized 2D transition metal dichalcogenides (TMDCs) (3L MoS2, 1L WS2) onto various substrates such as sapphire, SiO2/Si, and flexible substrates (mica, polyimide) has been developed using a water-soluble layer (Na2S/Na2SO4) underneath the as-grown film. The developed transfer process represents a fast, clean, generic, and scalable technique to transfer 2D atomic layers. The key strategy used in this process includes the dissolution of the Na2S/Na2SO4 layer due to the penetration of NaOH solution between the growth substrate and hydrophobic 2D TMDC film. As a proof-of-concept device, a broadband photodetector has been fabricated onto the transferred 3L MoS2, which shows photoresponse behavior for a wide range of wavelengths ranging from near-infrared (NIR) to UV. The enhancement in photocurrent was found to be 100 times and 10 times the dark current in the UV and visible regions, respectively. The fabricated photodetector shows a higher responsivity of 8.6 mA/W even at a low applied voltage (1.5 V) and low power density (0.6 μW/mm2). The detector enables a high detectivity of 2.9 × 1011 Jones. This work opens up the pathway toward flexible electronics and optoelectronics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。