Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli

视网膜双极细胞的非线性空间整合决定了人工和自然刺激的编码

阅读:10
作者:Helene Marianne Schreyer, Tim Gollisch

Abstract

The retina dissects the visual scene into parallel information channels, which extract specific visual features through nonlinear processing. The first nonlinear stage is typically considered to occur at the output of bipolar cells, resulting from nonlinear transmitter release from synaptic terminals. In contrast, we show here that bipolar cells themselves can act as nonlinear processing elements at the level of their somatic membrane potential. Intracellular recordings from bipolar cells in the salamander retina revealed frequent nonlinear integration of visual signals within bipolar cell receptive field centers, affecting the encoding of artificial and natural stimuli. These nonlinearities provide sensitivity to spatial structure below the scale of bipolar cell receptive fields in both bipolar and downstream ganglion cells and appear to arise at the excitatory input into bipolar cells. Thus, our data suggest that nonlinear signal pooling starts earlier than previously thought: that is, at the input stage of bipolar cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。