MicroRNA-143-5p modulates pulmonary artery smooth muscle cells functions in hypoxic pulmonary hypertension through targeting HIF-1α

MicroRNA-143-5p 通过靶向 HIF-1α 调节缺氧性肺动脉高压中的肺动脉平滑肌细胞功能

阅读:9
作者:B I Tang, Ming-Ming Tang, Qing-Mei Xu, Jian-Lu Guo, Ling Xuan, Jing Zhou, Xiao-Jing Wang, Heng Zhang, Pin-Fang Kang

Abstract

This paper explores the potential mechanism of microRNA-143-5p regulation effects on pulmonary artery smooth muscle cells (PASMCs) functions in hypoxic pulmonary hypertension (HPH) via targeting HIF-1a, which may offer a new idea for HPH therapy. PASMCs were transfected with mimics control/miR-143-5p mimics or inhibitor control/miR-143-5p inhibitor. We used Western blotting and RT-qPCR to detect the protein and mRNA expressions, CCK-8 assay to detect cellular viability, Annexin V-FITC/PI staining and caspase- 3/cleaved caspase-3 protein to evaluate cellular apoptosis, transwell migration experiment for cellular migration measurement and Dual luciferase reporter gene assay to prove the target of miR-143-5p. Cells under hypoxic condition presented the decreased protein and mRNA expressions of α-smooth muscle actin (SM-α-actin), Myocardin, smooth muscle myosin heavy chain (SMMHC), and smooth muscle-22α (SM22α), Calponin1 and Hypoxia-inducible factor-1α(HIF-1α), the increased cell viability and miR-143-5p level; Overexpression of miR-143-5p obviously reduced vascular smooth muscle-specific contraction marker protein levels and cellular apoptosis, increased cellular migration of PASMCs with hypoxia stimulation; Low-expression of miR-143-5p caused the opposite changes, while co-transfected with Si HIF-1 α blocked the beneficial effects of miR-143-5p inhibition on PASMCs under hypoxia. MicroRNA-143-5p can promote the phenotype conversion, proliferation and migration of pulmonary artery smooth muscle cells under hypoxic condition through direct targeting of HIF-1α.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。