Impact of liver PGC-1α on exercise and exercise training-induced regulation of hepatic autophagy and mitophagy in mice on HFF

肝脏 PGC-1α 对运动及运动训练诱导的小鼠肝脏自噬和线粒体自噬调节的影响

阅读:6
作者:Maja M Dethlefsen, Caroline M Kristensen, Anna S Tøndering, Signe B Lassen, Stine Ringholm, Henriette Pilegaard

Abstract

Hepatic autophagy has been shown to be regulated by acute exercise and exercise training. Moreover, high-fat diet-induced steatosis has been reported to be associated with impaired hepatic autophagy. In addition, autophagy has been shown to be regulated by acute exercise and exercise training in a PGC-1α dependent manner in skeletal muscle. The aim of this study was to test the hypotheses that high-fat high-fructose (HFF) diet changes hepatic autophagy and mitophagy, that exercise training can restore this through a PGC-1α-mediated mechanism, and that acute exercise regulates autophagy and mitophagy in the liver. Liver samples were obtained from liver-specific PGC-1α KO mice and their littermate Lox/Lox mice fed a HFF diet or a control diet for 13 weeks. The HFF mice were either exercise trained (ExT) on a treadmill the final 5 weeks or remained sedentary (UT). In addition, half of each group performed at the end of the intervention an acute 1 h exercise bout. HFF resulted in increased hepatic BNIP3 dimer and Parkin protein, while exercise training increased BNIP3 total protein without affecting the elevated BNIP3 dimer protein. In addition, exercise training reversed a HFF-induced increase in hepatic LC3II/LC3I protein ratio, as well as a decreased PGC-1α mRNA level. Acute exercise increased hepatic PGC-1α mRNA in HFF UT mice only. In conclusion, this indicates that exercise training in part reverses a HFF-induced increase in hepatic autophagy and capacity for mitophagy in a PGC-1α-independent manner. Moreover, HFF may blunt acute exercise-induced regulation of hepatic autophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。