Altered white matter architecture in BDNF met carriers

BDNF 携带者的白质结构发生改变

阅读:9
作者:Erik Ziegler, Ariane Foret, Laura Mascetti, Vincenzo Muto, Anahita Le Bourdiec-Shaffii, Johan Stender, Evelyne Balteau, Vinciane Dideberg, Vincent Bours, Pierre Maquet, Christophe Phillips

Abstract

Brain-derived neurotrophic factor (BDNF) modulates the pruning of synaptically silent axonal arbors. The Met allele of the BDNF gene is associated with a reduction in the neurotrophin's activity-dependent release. We used diffusion-weighted imaging to construct structural brain networks for 36 healthy subjects with known BDNF genotypes. Through permutation testing we discovered clear differences in connection strength between subjects carrying the Met allele and those homozygotic for the Val allele. We trained a Gaussian process classifier capable of identifying the subjects' allelic group with 86% accuracy and high predictive value. In Met carriers structural connectivity was greatly increased throughout the forebrain, particularly in connections corresponding to the anterior and superior corona radiata as well as corticothalamic and corticospinal projections from the sensorimotor, premotor, and prefrontal portions of the internal capsule. Interhemispheric connectivity was also increased via the corpus callosum and anterior commissure, and extremely high connectivity values were found between inferior medial frontal polar regions via the anterior forceps. We propose that the decreased availability of BDNF leads to deficits in axonal maintenance in carriers of the Met allele, and that this produces mesoscale changes in white matter architecture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。