FOXP3 and miR-155 cooperate to control the invasive potential of human breast cancer cells by down regulating ZEB2 independently of ZEB1

FOXP3 和 miR-155 协同下调 ZEB2(独立于 ZEB1)来控制人类乳腺癌细胞的侵袭潜力

阅读:5
作者:Cheryl Y Brown, Sonia Dayan, Soon Wei Wong, Adrian Kaczmarek, Christopher M Hope, Stephen M Pederson, Victoria Arnet, Gregory J Goodall, Darryl Russell, Timothy J Sadlon, Simon C Barry

Abstract

Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。