Forsythiaside A Alleviates Lipopolysaccharide-Induced Acute Liver Injury through Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation

连翘苷 A 通过抑制内质网应激和 NLRP3 炎症小体活化减轻脂多糖诱导的急性肝损伤

阅读:5
作者:Jing-Nan Fu, Shu-Chang Liu, Yi Chen, Jie Zhao, Ning Lu, Tao Ma

Abstract

The liver is the primary site of inflammation caused by bacterial endotoxins in sepsis, and septic acute liver injury (SALI) is usually associated with poor outcomes in sepsis. Forsythiaside A (FTA), an active constituent of Forsythia suspensa, has been reported to have anti-inflammatory properties, antioxidant properties, and protective properties against neuroinflammation, sepsis, and edema. Therefore, the purpose of the present study was to examine FTA's potential effects on lipopolysaccharide (LPS)-induced SALI in mice. Our results indicated that pretreatment with FTA significantly attenuated aspartate aminotransferase (AST) and aminoleucine transferase (ALT) levels in plasma, ameliorated histopathological damage, inhibited hepatocyte apoptosis, diminished the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the liver from mice exposed to LPS. Furthermore, our data showed that the administration of LPS resulted in robust endoplasmic reticulum (ER) stress response, as evidenced by glucose-regulated protein 78 (GRP78) upregulation, phosphorylated-protein kinase R-like ER kinase (p-PERK) activation, elF2α phosphorylation, and activating transcription factor 4 (ATF4) and CHOP overexpression in the liver. This, in turn, led to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation, including the cleavage of caspase-1, secretion of IL-1β, and pyroptotic cell death in the liver specimens. Importantly, the ER stress response induced by the LPS challenge was blocked by FTA administration. Correspondingly, NLRP3 inflammasome activation was significantly ameliorated by the pretreatment with FTA. Thus, we demonstrated that FTA pretreatment could protect mice from LPS-induced SALI, and its protective effects were possibly mediated by inhibiting ER stress response and subsequent NLRP3 inflammasome activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。