A zebrafish model of combined saposin deficiency identifies acid sphingomyelinase as a potential therapeutic target

斑马鱼鞘氨醇缺乏症模型表明酸性鞘磷脂酶是潜在的治疗靶点

阅读:7
作者:Tejia Zhang, Ivy Alonzo, Chris Stubben, Yijie Geng, Chelsea Herdman, Nancy Chandler, Kim P Doane, Brock R Pluimer, Sunia A Trauger, Randall T Peterson

Abstract

Sphingolipidoses are a subcategory of lysosomal storage diseases (LSDs) caused by mutations in enzymes of the sphingolipid catabolic pathway. Like many LSDs, neurological involvement in sphingolipidoses leads to early mortality with limited treatment options. Given the role of myelin loss as a major contributor toward LSD-associated neurodegeneration, we investigated the pathways contributing to demyelination in a CRISPR-Cas9-generated zebrafish model of combined saposin (psap) deficiency. psap knockout (KO) zebrafish recapitulated major LSD pathologies, including reduced lifespan, reduced lipid storage, impaired locomotion and severe myelin loss; loss of myelin basic protein a (mbpa) mRNA was progressive, with no changes in additional markers of oligodendrocyte differentiation. Brain transcriptomics revealed dysregulated mTORC1 signaling and elevated neuroinflammation, where increased proinflammatory cytokine expression preceded and mTORC1 signaling changes followed mbpa loss. We examined pharmacological and genetic rescue strategies via water tank administration of the multiple sclerosis drug monomethylfumarate (MMF), and crossing the psap KO line into an acid sphingomyelinase (smpd1) deficiency model. smpd1 mutagenesis, but not MMF treatment, prolonged lifespan in psap KO zebrafish, highlighting the modulation of acid sphingomyelinase activity as a potential path toward sphingolipidosis treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。