Osteopontin-A Potential Biomarker for IgA Nephropathy: Machine Learning Application

骨桥蛋白——IgA 肾病的潜在生物标志物:机器学习应用

阅读:6
作者:Barbara Moszczuk, Natalia Krata, Witold Rudnicki, Bartosz Foroncewicz, Dominik Cysewski, Leszek Pączek, Beata Kaleta, Krzysztof Mucha

Abstract

Many potential biomarkers in nephrology have been studied, but few are currently used in clinical practice. One is osteopontin (OPN). We compared urinary OPN concentrations in 80 participants: 67 patients with various biopsy-proven glomerulopathies (GNs)-immunoglobulin A nephropathy (IgAN, 29), membranous nephropathy (MN, 20) and lupus nephritis (LN, 18) and 13 with no GN. Follow-up included 48 participants. Machine learning was used to correlate OPN with other factors to classify patients by GN type. The resulting algorithm had an accuracy of 87% in differentiating IgAN from other GNs using urinary OPN levels only. A lesser effect for discriminating MN and LN was observed. However, the lower number of patients and the phenotypic heterogeneity of MN and LN might have affected those results. OPN was significantly higher in IgAN at baseline than in other GNs and therefore might be useful for identifying patients with IgAN. That observation did not apply to either patients with IgAN at follow-up or to patients with other GNs. OPN seems to be a valuable biomarker and should be validated in future studies. Machine learning is a powerful tool that, compared with traditional statistical methods, can be also applied to smaller datasets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。