Correction of T-Cell Repertoire and Autoimmune Diabetes in NOD Mice by Non-myeloablative T-Cell Depleted Allogeneic HSCT

通过非清髓性 T 细胞耗竭同种异体 HSCT 纠正 NOD 小鼠的 T 细胞库和自身免疫性糖尿病

阅读:10
作者:Rakefet Sidlik Muskatel, Bar Nathansohn-Levi, Shlomit Reich-Zeliger, Michal Mark, Liat Stoler-Barak, Chava Rosen, Irit Milman-Krentsis, Esther Bachar Lustig, Robert Pete Gale, Nir Friedman, Yair Reisner

Abstract

The induction of partial tolerance toward pancreatic autoantigens in the treatment of type 1 diabetes mellitus (T1DM) can be attained by autologous hematopoietic stem cell transplantation (HSCT). However, most patients treated by autologous HSCT eventually relapse. Furthermore, allogeneic HSCT which could potentially provide a durable non-autoimmune T-cell receptor (TCR) repertoire is associated with a substantial risk for transplant-related mortality. We have previously demonstrated an effective approach for attaining engraftment without graft versus host disease (GVHD) of allogeneic T-cell depleted HSCT, following non-myeloablative conditioning, using donor-derived anti-3rd party central memory CD8 veto T cells (Tcm). In the present study, we investigated the ability of this relatively safe transplant modality to eliminate autoimmune T-cell clones in the NOD mouse model which spontaneously develop T1DM. Our results demonstrate that using this approach, marked durable chimerism is attained, without any transplant-related mortality, and with a very high rate of diabetes prevention. TCR sequencing of transplanted mice showed profound changes in the T-cell repertoire and decrease in the prevalence of specific autoimmune T-cell clones directed against pancreatic antigens. This approach could be considered as strategy to treat people destined to develop T1DM but with residual beta cell function, or as a platform for prevention of beta cell destruction after transplantation of allogenic beta cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。