Isoliquiritigenin attenuates myocardial ischemia reperfusion through autophagy activation mediated by AMPK/mTOR/ULK1 signaling

异甘草素通过 AMPK/mTOR/ULK1 信号介导的自噬激活减轻心肌缺血再灌注

阅读:8
作者:Liying Shen, Yingwei Zhu, Zhenfeng Chen, Feng Shen, Weiwei Yu, Li Zhang

Background

Ischemia reperfusion (IR) causes impaired myocardial function, and autophagy activation ameliorates myocardial IR injury. Isoliquiritigenin (ISO) has been found to protect myocardial tissues via AMPK, with exerting anti-tumor property through autophagy activation. This study aims to investigate ISO capacity to attenuate myocardial IR through autophagy activation mediated by AMPK/mTOR/ULK1 signaling.

Conclusion

ISO treatment may induce autophagy by regulating AMPK/mTOR/ULK1 signaling, thereby improving myocardial IR injury, as a potential candidate for treatment of myocardial IR injury.

Methods

ISO effects were explored by SD rats and H9c2 cells. IR rats and IR-induced H9c2 cell models were established by ligating left anterior descending (LAD) coronary artery and hypoxia/re-oxygenation, respectively, followed by low, medium and high dosages of ISO intervention (Rats: 10, 20, and 40 mg/kg; H9c2 cells: 1, 10, and 100 μmol/L). Myocardial tissue injury in rats was assessed by myocardial function-related index, HE staining, Masson trichrome staining, TTC staining, and ELISA. Autophagy of H9c2 cells was detected by transmission electron microscopy (TEM) and immunofluorescence. Autophagy-related and AMPK/mTOR/ULK1 pathway-related protein expressions were detected with western blot.

Results

ISO treatment caused myocardial function improvement, and inhibition of myocardial inflammatory infiltration, fibrosis, infarct area, oxidative stress, CK-MB, cTnI, and cTnT expression in IR rats. In IR-modeled H9c2 cells, ISO treatment lowered apoptosis rate and activated autophagy and LC3 fluorescence expression. In vivo and in vitro, ISO intervention exhibited enhanced Beclin1, LC3II/LC3I, and p-AMPK/AMPK levels, whereas inhibited P62, p-mTOR/mTOR and p-ULK1(S757)/ULK1 protein expression, activating autophagy and protecting myocardial tissues from IR injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。