DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells

DNMT3A 和 TET1 协同调控小鼠胚胎干细胞启动子表观遗传景观

阅读:4
作者:Tianpeng Gu, Xueqiu Lin, Sean M Cullen, Min Luo, Mira Jeong, Marcos Estecio, Jianjun Shen, Swanand Hardikar, Deqiang Sun, Jianzhong Su, Danielle Rux, Anna Guzman, Minjung Lee, Lei Stanley Qi, Jia-Jia Chen, Michael Kyba, Yun Huang, Taiping Chen, Wei Li, Margaret A Goodell

Background

DNA methylation is a heritable epigenetic mark, enabling stable but reversible gene repression. In mammalian cells, DNA methyltransferases (DNMTs) are responsible for modifying cytosine to 5-methylcytosine (5mC), which can be further oxidized by the TET dioxygenases to ultimately cause DNA demethylation. However, the genome-wide cooperation and functions of these two families of proteins, especially at large under-methylated regions, called canyons, remain largely unknown.

Conclusions

We conclude that DNMT3A and TET1 regulate the epigenome and gene expression at specific targets via their functional interplay.

Results

Here we demonstrate that DNMT3A and TET1 function in a complementary and competitive manner in mouse embryonic stem cells to mediate proper epigenetic landscapes and gene expression. The longer isoform of DNMT3A, DNMT3A1, exhibits significant enrichment at distal promoters and canyon edges, but is excluded from proximal promoters and canyons where TET1 shows prominent binding. Deletion of Tet1 increases DNMT3A1 binding capacity at and around genes with wild-type TET1 binding. However, deletion of Dnmt3a has a minor effect on TET1 binding on chromatin, indicating that TET1 may limit DNA methylation partially by protecting its targets from DNMT3A and establishing boundaries for DNA methylation. Local CpG density may determine their complementary binding patterns and therefore that the methylation landscape is encoded in the DNA sequence. Furthermore, DNMT3A and TET1 impact histone modifications which in turn regulate gene expression. In particular, they regulate Polycomb Repressive Complex 2 (PRC2)-mediated H3K27me3 enrichment to constrain gene expression from bivalent promoters. Conclusions: We conclude that DNMT3A and TET1 regulate the epigenome and gene expression at specific targets via their functional interplay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。