Postdevelopmental knockout of Orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy

Orai1 的发育后敲除可改善杜氏肌营养不良症小鼠模型的肌肉病理

阅读:5
作者:Maricela García-Castañeda, Antonio Michelucci, Nan Zhao, Sundeep Malik, Robert T Dirksen

Abstract

Duchenne muscular dystrophy (DMD), an X-linked disorder caused by loss-of-function mutations in the dystrophin gene, is characterized by progressive muscle degeneration and weakness. Enhanced store-operated Ca2+ entry (SOCE), a Ca2+ influx mechanism coordinated by STIM1 sensors of luminal Ca2+ within the sarcoplasmic reticulum (SR) and Ca2+-permeable Orai1 channels in the sarcolemma, is proposed to contribute to Ca2+-mediated muscle damage in DMD. To directly determine the impact of Orai1-dependent SOCE on the dystrophic phenotype, we crossed mdx mice with tamoxifen-inducible, muscle-specific Orai1 knockout mice (mdx-Orai1 KO mice). Both constitutive and SOCE were significantly increased in flexor digitorum brevis fibers from mdx mice, while SOCE was absent in fibers from both Orai1 KO and mdx-Orai1 KO mice. Compared with WT mice, fibers from mdx mice exhibited (1) increased resting myoplasmic Ca2+ levels, (2) reduced total releasable Ca2+ store content, and (3) a prolonged rate of electrically evoked Ca2+ transient decay. These effects were partially normalized in fibers from mdx-Orai1 KO mice. Intact extensor digitorum longus muscles from mdx mice exhibited a significant reduction of maximal specific force, which was rescued in muscles from mdx-Orai1 KO mice. Finally, during exposure to consecutive eccentric contractions, muscles from mdx mice displayed a more pronounced decline in specific force compared with that of WT mice, which was also significantly attenuated by Orai1 ablation. Together, these results indicate that enhanced Orai1-dependent SOCE exacerbates the dystrophic phenotype and that Orai1 deficiency improves muscle pathology by both normalizing Ca2+ homeostasis and promoting sarcolemmal integrity/stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。