TRAP1-dependent regulation of p70S6K is involved in the attenuation of protein synthesis and cell migration: relevance in human colorectal tumors

TRAP1 依赖的 p70S6K 调节参与蛋白质合成和细胞迁移的衰减:与人类结直肠肿瘤的相关性

阅读:8
作者:Danilo Swann Matassa, Ilenia Agliarulo, Maria Rosaria Amoroso, Francesca Maddalena, Leandra Sepe, Maria Carla Ferrari, Vinay Sagar, Silvia D'Amico, Fabrizio Loreni, Giovanni Paolella, Matteo Landriscina, Franca Esposito

Abstract

TNF receptor-associated protein 1 (TRAP1) is an HSP90 chaperone involved in stress protection and apoptosis in mitochondrial and extramitochondrial compartments. Remarkably, aberrant deregulation of TRAP1 function has been observed in several cancer types with potential new opportunities for therapeutic intervention in humans. Although previous studies by our group identified novel roles of TRAP1 in quality control of mitochondria-destined proteins through the attenuation of protein synthesis, molecular mechanisms are still largely unknown. To shed further light on the signaling pathways regulated by TRAP1 in the attenuation of protein synthesis, this study demonstrates that the entire pathway of cap-mediated translation is activated in cells following TRAP1 interference: consistently, expression and consequent phosphorylation of p70S6K and RSK1, two translation activating kinases, are increased upon TRAP1 silencing. Furthermore, we show that these regulatory functions affect the response to translational stress and cell migration in wound healing assays, processes involving both kinases. Notably, the regulatory mechanisms controlled by TRAP1 are conserved in colorectal cancer tissues, since an inverse correlation between TRAP1 and p70S6K expression is found in tumor tissues, thereby supporting the relevant role of TRAP1 translational regulation in vivo. Taken as a whole, these new findings candidate TRAP1 network for new anti-cancer strategies aimed at targeting the translational/quality control machinery of tumor cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。