Background
Quantitative real time polymerase chain reaction (qPCR) is an extremely powerful technique for monitoring gene expression. The quantity of the messenger ribonucleic acids (mRNA) of interest should be normalized using a reference gene, in order to avoid unreliable
Conclusion
Most stable reference genes under our experimental conditions were: RPL13A for adipose tissue- and Whartońs Jelly-derived mesenchymal stromal cells, and HPRT1 for bone marrow-derived mesenchymal stromal cells and dermal fibroblasts. ACTB was the most unstable gene when evaluating adipose tissue- and Whartońs Jelly-derived mesenchymal stromal cells, whilst GAPDH and B2M were the most unstable genes for bone marrow-derived mesenchymal stromal cells and dermal fibroblasts, respectively.
Results
In the present study, we compared expression levels of five putative reference genes (HPRT1, ACTB, GAPDH, RPL13A and B2M) in primary cultures of four different human cells: mesenchymal stromal cells obtained from bone marrow, adipose tissue or umbilical cord Whartońs Jelly, and dermal fibroblasts, under different expansion and differentiation conditions. We observed that reference genes are not the same for different cells under the same culture conditions.
