Retinal Penetrating Adeno-Associated Virus

视网膜穿透腺相关病毒

阅读:4
作者:Binit Kumar, Manish Mishra, Siobhan Cashman, Rajendra Kumar-Singh

Conclusions

We have developed a novel AAV vector that enables delivery of transgenes to the outer retina of mice, including photoreceptors and RPE following intravitreal injection.

Methods

Recently, we described a molecular chaperone (Nuc1) that enhanced the penetration of small and large molecules, including AAV, into the retina. The Nuc1 amino acid sequence or a truncated version of Nuc1 (IKV) was genetically incorporated into an exposed loop of AAV2/9 VP1 protein. These novel recombinant AAV vectors expressing green fluorescent protein (GFP) or nuclear factor erythroid 2 p45-related factor 2 (Nrf2) were injected into the vitreous of C57Bl/6J or Nrf2 knockout mice, respectively. The amount of GFP expression or oxidative stress as measured by 8-Hydroxy-2'-deoxyguanosine staining in C57Bl/6J or Nrf2 knockout mice, respectively, was quantified.

Purpose

The most common method of delivery of genes to the outer retina uses recombinant adeno-associated virus (AAV) injected into the subretinal space using a surgical procedure. In contrast, most drugs are delivered to the retina using an intravitreal approach in an office setting. The objective of the current study was to develop AAV vectors that can reach the outer retina via intravitreal injection.

Results

Incorporation of Nuc1 into AAV2/9 did not lead to significant expression of GFP in the murine retina. However, incorporation of IKV into AAV2/9 led to robust expression of GFP in photoreceptors and retinal pigment epithelium (RPE) via the intravitreal and subretinal routes of delivery. Furthermore, expression of Nrf2 using an IKV vector led to a reduction in oxidative stress in the retina of C57Bl/6J and Nrf2 knockout mice. Conclusions: We have developed a novel AAV vector that enables delivery of transgenes to the outer retina of mice, including photoreceptors and RPE following intravitreal injection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。