Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test

AMPA 受体参与小鼠悬尾试验和强迫游泳试验中锂的抗抑郁样作用

阅读:5
作者:Todd D Gould, Kelley C O'Donnell, Eliot R Dow, Jing Du, Guang Chen, Husseini K Manji

Abstract

In addition to its clinical antimanic effects, lithium also has efficacy in the treatment of depression. However, the mechanism by which lithium exerts its antidepressant effects is unclear. Our objective was to further characterize the effects of peripheral and central administration of lithium in mouse models of antidepressant efficacy as well as to investigate the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in these behaviors. We utilized the mouse forced swim test (FST) and tail suspension test (TST), intracerebroventricular (ICV) lithium administration, AMPA receptor inhibitors, and BS3 crosslinking followed by Western blot. Both short- and long-term administration of lithium resulted in robust antidepressant-like effects in the mouse FST and TST. Using ICV administration of lithium, we show that these effects are due to actions of lithium on the brain, rather than to peripheral effects of the drug. Both ICV and rodent chow (0.4% LiCl) administration paradigms resulted in brain lithium concentrations within the human therapeutic range. The antidepressant-like effects of lithium in the FST and TST were blocked by administration of AMPA receptor inhibitors. Additionally, administration of lithium increased the cell surface expression of GluR1 and GluR2 in the mouse hippocampus. Collectively, these data show that lithium exerts centrally mediated antidepressant-like effects in the mouse FST and TST that require AMPA receptor activation. Lithium may exert its antidepressant effects in humans through AMPA receptors, thus further supporting a role of targeting AMPA receptors as a therapeutic approach for the treatment of depression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。