Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum

通过对 Coniothyrium minitans 进行基因组和转录组测序,阐明了菌寄生现象,Coniothyrium minitans 是植物病原菌核病菌的一种重要生防真菌

阅读:7
作者:Huizhang Zhao, Ting Zhou, Jiatao Xie, Jiasen Cheng, Tao Chen, Daohong Jiang, Yanping Fu

Abstract

Coniothyrium minitans is a mycoparasite of the notorious plant pathogen Sclerotinia sclerotiorum. To further understand the parasitism of C. minitans, we assembled and analysed its genome and performed transcriptome analyses. The genome of C. minitans strain ZS-1 was assembled into 350 scaffolds and had a size of 39.8 Mb. A total of 11 437 predicted genes and proteins were annotated, and 30.8 % of the blast hits matched proteins encoded by another member of the Pleosporales, Paraphaeosphaeria sporulosa, a worldwide soilborne fungus with biocontrol ability. The transcriptome of strain ZS-1 during the early interaction with S. sclerotiorum at 0, 4 and 12 h was analysed. The detected expressed genes were involved in responses to host defenses, including cell-wall-degrading enzymes, transporters, secretory proteins and secondary metabolite productions. Seventeen differentially expressed genes (DEGs) of fungal cell-wall-degrading enzymes (FCWDs) were up-regulated during parasitism, with only one down-regulated. Most of the monocarboxylate transporter genes of the major facilitator superfamily and all the detected ABC transporters, especially the heavy metal transporters, were significantly up-regulated. Approximately 8 % of the 11 437 proteins in C. minitans were predicted to be secretory proteins with catalytic activity. In the molecular function category, hydrolase activity, peptidase activity and serine hydrolase activity were enriched. Most genes involved in serine hydrolase activity were significantly up-regulated. This genomic analysis and genome-wide expression study demonstrates that the mycoparasitism process of C. minitans is complex and a broad range of proteins are deployed by C. minitans to successfully invade its host. Our study provides insights into the mechanisms of the mycoparasitism between C. minitans and S. sclerotiorum and identifies potential secondary metabolites from C. minitans for application as a biocontrol agent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。