A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment

罗米地辛治疗后,包括 ARID1A、GADD45B 和 DUSP1 在内的信号级联会诱导细胞凋亡并影响生殖细胞癌细胞周期

阅读:7
作者:Daniel Nettersheim, Sina Jostes, Martin Fabry, Friedemann Honecker, Valerie Schumacher, Jutta Kirfel, Glen Kristiansen, Hubert Schorle

Abstract

In Western countries, the incidence of testicular germ cell cancers (GCC) is steadily rising over the last decades. Mostly, men between 20 and 40 years of age are affected. In general, patients suffering from GCCs are treated by orchiectomy and radio- or chemotherapy. Due to resistance mechanisms, intolerance to the therapy or denial of chemo- / radiotherapy by the patients, GCCs are still a lethal threat, highlighting the need for alternative treatment strategies.In this study, we revealed that germ cell cancer cell lines are highly sensitive to the histone deacetylase inhibitor romidepsin in vitro and in vivo, highlighting romidepsin as a potential therapeutic option for GCC patients.Romidepsin-mediated inhibition of histone deacetylases led to disturbances of the chromatin landscape. This resulted in locus-specific histone-hyper- or hypoacetylation. We found that hypoacetylation at the ARID1A promotor caused repression of the SWI/SNF-complex member ARID1A. In consequence, this resulted in upregulation of the stress-sensors and apoptosis-regulators GADD45B, DUSP1 and CDKN1A. RNAi-driven knock down of ARID1A mimicked in parts the effects of romidepsin, while CRISPR/Cas9-mediated deletion of GADD45B attenuated the romidepsin-provoked induction of apoptosis and cell cycle alterations.We propose a signaling cascade involving ARID1A, GADD45B and DUSP1 as mediators of the romidepsin effects in GCC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。