Eight nucleotide substitutions inhibit splicing to HPV-16 3'-splice site SA3358 and reduce the efficiency by which HPV-16 increases the life span of primary human keratinocytes

八个核苷酸替换抑制了与 HPV-16 3'-剪接位点 SA3358 的剪接,并降低了 HPV-16 延长原代人角质形成细胞寿命的效率

阅读:4
作者:Xiaoze Li, Cecilia Johansson, Carlos Cardoso Palacios, Anki Mossberg, Soniya Dhanjal, Monika Bergvall, Stefan Schwartz

Abstract

The most commonly used 3'-splice site on the human papillomavirus type 16 (HPV-16) genome named SA3358 is used to produce HPV-16 early mRNAs encoding E4, E5, E6 and E7, and late mRNAs encoding L1 and L2. We have previously shown that SA3358 is suboptimal and is totally dependent on a downstream splicing enhancer containingmultiple potential ASF/SF2 binding sites. Here weshow that only one of the predicted ASF/SF2 sites accounts for the majority of the enhancer activity. We demonstrate that single nucleotide substitutions in this predicted ASF/SF2 site impair enhancer function and that this correlates with less efficient binding to ASF/SF2 in vitro. We provide evidence that HPV-16 mRNAs that arespliced to SA3358 interact with ASF/SF2 in living cells. In addition,mutational inactivation of the ASF/SF2 site weakened the enhancer at SA3358 in episomal forms of the HPV-16 genome, indicating that the enhancer is active in the context of the full HPV-16 genome.This resulted in induction of HPV-16 late gene expression as a result of competition from late splice site SA5639. Furthermore, inactivation of the ASF/SF2 site of the SA3358 splicing enhancer reduced the ability of E6- and E7-encoding HPV-16 plasmids to increase the life span of primary keratinocytes in vitro, demonstrating arequirement for an intact splicing enhancer of SA3358 forefficient production of the E6 and E7 mRNAs. These results link the strength of the HPV-16 SA3358 splicing enhancer to expression of E6 and E7 and to the pathogenic properties of HPV-16.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。