Microbial Dynamics and Metabolite Profiles in Different Types of Salted Seafood (Jeotgal) During Fermentation

发酵过程中不同类型腌制海鲜 (Jeotgal) 的微生物动态和代谢物概况

阅读:12
作者:Ju-Young Lim, Yun-Jeong Choi, Ji-Young Choi, Ji-Hee Yang, Young Bae Chung, Sung-Hee Park, Sung Gi Min, Mi-Ai Lee

Abstract

Salted and fermented seafood (jeotgal) is known for its long shelf life and unique flavor. Despite the existence of various types of salted seafood, the factors influencing this quality have yet to be identified. These factors are essential for improving the quality of salted seafood, optimizing the fermentation process, and advancing the industrialization of fermented foods. Therefore, in this study, we explored microbial dynamics and changes in quality characteristics in three salted seafood items - salted anchovies (MJ), salted cutlass offal (GJ), and salted croakers (HJ), over a 24-month fermentation period. Distinct microbial community profiles, dominated by Tetragenococcus halophilus, Halanaerobium fermentans, and Chromohalobacter canadensis in MJ, GJ, and HJ, respectively, affect the metabolic pathways and the corresponding flavor profiles. The pH of all samples ranged from 5.7-6.0. The titratable acidity was highest in MJ at 1.4% and lowest in HJ at approximately 0.7%. Salinity was below 25% in all samples but slightly lower in MJ. Significant differences were observed in the amino acid, nucleotide, and overall metabolite profiles. MJ exhibited the highest amino acid and nitrogen-related factor levels, such as glutamic acid and hypoxanthine, enhancing flavor complexity. Correlation analysis revealed significant associations among the types, metabolites, and microbial communities. Microbial survival mechanisms in high-salt environments result in the production of unique metabolites, including umami and aroma components as well as precursors of biogenic amines, which can affect the overall quality of the final product. These differences were primarily influenced by the fish type rather than the fermentation time. Our findings provide foundational insights for enhancing fermentation strategies, improving product consistency, and advancing the industrial application of microbial management in seafood fermentation. This study not only fills a significant gap in the current understanding of fermented seafood but also outlines practical approaches for industry applications for the optimization of product quality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。