Boosted Photocatalytic Activities of Ag2CrO4 through Eu3+-Doping Process

通过 Eu3+ 掺杂工艺提高 Ag2CrO4 的光催化活性

阅读:7
作者:Josiane C Souza, Samantha C S Lemos, Marcelo Assis, Carlos H M Fernandes, Lara K Ribeiro, Yeison Núñez-de la Rosa, Márcio D Teodoro, Lourdes Gracia, Juan Andrés, Lucia H Mascaro, Elson Longo

Abstract

Ag2CrO4 is a representative member of a family of Ag-containing semiconductors with highly efficient visible-light-driven responsive photocatalysts. The doping process with Eu3+ is known to effectively tune their properties, thus opening opportunities for investigations and application. Here, we report the enhancement of the photocatalytic activity and stability of Ag2CrO4 by introducing Eu3+cations. The structural, electronic, and photocatalytic properties of Ag2CrO4:xEu3+ (x = 0, 0.25, 0.5, 1%) synthesized using the coprecipitation method were systematically discussed, and their photodegradation activity against rhodamine B (RhB), ciprofloxacin hydrochloride monohydrate (CIP), and 4-nitrophenol (4-NP) was evaluated. Structural analyses reveal a short-range symmetry breaking in the Ag2CrO4 lattice after Eu3+ doping, influencing the material morphology, size, and electronic properties. XPS analysis confirmed the incorporation of Eu3+ and alteration of the surface oxygen species. Furthermore, photoluminescence measurements indicated that the doping process was responsible for reducing recombination processes. The sample doped with 0.25% Eu3+ exhibited superior photocatalytic performance compared to pure Ag2CrO4. Scavenger experiments revealed an increase in the degradation via •OH reactive species for the sample doped with 0.25% Eu3+. DFT calculations provided atomic-scale insights into the structural and electronic changes induced by the Eu3+ doping process in the Ag2CrO4 host lattice. This study confirms that Eu3+ doping alters the band structure, enabling different degradation paths and boosting the separation/transfer of photogenerated charges, thereby improving the overall photocatalytic performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。