Oxygen and an extracellular phase transition independently control central regulatory genes and conidiogenesis in Aspergillus fumigatus

氧气和细胞外相变独立控制烟曲霉的中央调控基因和分生孢子发生

阅读:5
作者:Myoung-Hwan Chi, Kelly D Craven

Abstract

Conidiogenesis is the primary process for asexual reproduction in filamentous fungi. As the conidia resulting from the conidiogenesis process are primarily disseminated via air currents and/or water, an outstanding question has been how fungi recognize aerial environments suitable for conidial development. In this study, we documented the somewhat complex development of the conidia-bearing structures, termed conidiophores, from several Aspergillus species in a subsurface (gel-phase) layer of solid media. A subset of the isolates studied was able to develop conidiophores in a gel-phase environment, but exposure to the aeriform environment was required for the terminal developmental transition from phialide cells to conidia. The remaining Aspergilli could not initiate the conidiogenesis process until they were exposed to the aeriform environment. Our observations of conidiophore development in high or low oxygen conditions in both aeriform and gel-phase environments revealed that oxygen and the aeriform state are positive environmental factors for inducing conidiogenesis in most of the aspergilli tested in this study. Transcriptional analysis using A. fumigatus strain AF293 confined to either the aeriform or gel-phase environments revealed that expression of a key regulatory gene for conidiophore development (AfubrlA) is facilitated by oxygen while expression of another regulatory gene controlling conidia formation from phialides (AfuabaA) was repressed regardless of oxygen levels in the gel-embedded environment. Furthermore, by comparing the developmental behavior of conidiation-defective mutants lacking genes controlling various regulatory checkpoints throughout the conidiogenesis pathway, we propose that this aerial response by the fungus requires both oxygen and the phase transition (solid to aeriform), with these environmental signals integrating into the upstream regulatory pathway and central regulatory pathway of conidiogenesis, respectively. Our findings provide not only novel insight into how fungi respond to an aerial environment to trigger development for airborne conidia production but also the relationship between environmental factors and conidiogenesis regulation in aspergilli.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。