Sensor dimer disruption as a new mode of action to block the IRE1-mediated unfolded protein response

传感器二聚体破坏是阻断 IRE1 介导的未折叠蛋白反应的新作用方式

阅读:6
作者:Kosala N Amarasinghe, Diana Pelizzari-Raymundo, Antonio Carlesso, Eric Chevet, Leif A Eriksson, Sayyed Jalil Mahdizadeh

Abstract

The unfolded protein response (UPR) is activated to cope with an accumulation of improperly folded proteins in the Endoplasmic reticulum (ER). The Inositol requiring enzyme 1α (IRE1α) is the most evolutionary conserved transducer of the UPR. Activated IRE1 forms 'back-to-back'-dimers that enables the unconventional splicing of X-box Binding Protein 1 (XBP1) mRNA. The spliced XBP1 (XBP1s) mRNA is translated into a transcription factor controlling the expression of UPR target genes. Herein, we report a detailed in silico screening specifically targeting for the first time the dimer interface at the IRE1 RNase region. Using the database of FDA approved drugs, we identified four compounds (neomycin, pemetrexed, quercitrin and rutin) that were able to bind to and distort IRE1 RNase cavity. The activity of the compounds on IRE1 phosphorylation was evaluated in HEK293T cells and on IRE1 RNase activity using an in vitro fluorescence assay. These analyzes revealed sub-micromolar IC50 values. The current study reveals a new and unique mode of action to target and block the IRE1-mediated UPR signaling, whereby we may avoid problems associated with selectivity occurring when targeting the IRE1 kinase pocket as well as the inherent reactivity of covalent inhibitors targeting the RNase pocket.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。