Ultrasonic-assisted Fenton reaction inducing surface reconstruction endows nickel/iron-layered double hydroxide with efficient water and organics electrooxidation

超声波辅助芬顿反应诱导表面重构使镍/铁层状双氢氧化物具有高效的水和有机物电氧化性能

阅读:5
作者:Shanfu Sun, Tianliang Wang, Ruiqi Liu, Zhenchao Sun, Xidong Hao, Yinglin Wang, Pengfei Cheng, Lei Shi, Chunfu Zhang, Xin Zhou

Abstract

Nickel/iron-layered double hydroxide (NiFe-LDH) tends to undergo an electrochemically induced surface reconstruction during the water oxidation in alkaline, which will consume excess electric energy to overcome the reconstruction thermodynamic barrier. In the present work, a novel ultrasonic wave-assisted Fenton reaction strategy is employed to synthesize the surface reconstructed NiFe-LDH nanosheets cultivated directly on Ni foam (NiFe-LDH/NF-W). Morphological and structural characterizations reveal that the low-spin states of Ni2+ (t2g6eg2) and Fe2+ (t2g4eg2) on the NiFe-LDH surface partially transform into high-spin states of Ni3+ (t2g6eg1) and Fe3+ (t2g3eg2) and formation of the highly active species of NiFeOOH. A lower surface reconstruction thermodynamic barrier advantages the electrochemical process and enables the NiFe-LDH/NF-W electrode to exhibit superior electrocatalytic water oxidation activity, which delivers 10 mA cm-2 merely needing an overpotential of 235 mV. Besides, surface reconstruction endows NiFe-LDH/NF-W with outstanding electrooxidation activities for organic molecules of methanol, ethanol, glycerol, ethylene glycol, glucose, and urea. Ultrasonic-assisted Fenton reaction inducing surface reconstruction strategy will further advance the utilization of NiFe-LDH catalyst in water and organics electrooxidation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。