A bi-specific inhibitor targeting IL-17A and MMP-9 reduces invasion and motility in MDA-MB-231 cells

针对 IL-17A 和 MMP-9 的双特异性抑制剂可降低 MDA-MB-231 细胞的侵袭性和迁移率

阅读:6
作者:Dana Koslawsky, Marianna Zaretsky, Ron Alcalay, Ohad Mazor, Amir Aharoni, Niv Papo

Abstract

The cytokine IL-17A is associated with the progression of various cancers, but little is known about the molecular cross-talk between IL-17A and other tumor-promoting factors. Previous studies have shown that the IL-17A-mediated invasion of breast cancer cells can be inhibited by selective antagonists of the matrix metalloproteinase 9 (MMP-9), suggesting that the cross-talk between IL-17A and MMP-9 may promote cancer invasiveness and metastasis. Here, we present a novel strategy for developing cancer therapeutics, based on the simultaneous binding and inhibition of both IL-17A and MMP-9. To this end, we use a bi-specific heterodimeric fusion protein, comprising a natural inhibitor of MMPs (N-TIMP2) fused with an engineered extracellular domain (V3) of the IL-17A receptor. We show that, as compared with the mono-specific inhibitors of IL-17A (V3) and MMP-9 (N-TIMP2), the engineered bi-specific fusion protein inhibits both MMP-9 activation and IL-17A-induced cytokine secretion from fibroblasts and exhibits a synergistic inhibition of both the migration and invasion of breast cancer cells. Our findings demonstrate, for the first time, that dual targeting of inflammatory (IL-17A) and extracellular matrix remodeling (MMP) pathways can potentially be used as a novel therapeutic approach against cancer. Moreover, the platform developed here for generating the bi-specific IL-17A/MMP-9 inhibitor can be utilized for generating bi-specific inhibitors for other cytokines and MMPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。