High-Density Recombinant Adeno-Associated Viral Particles are Competent Vectors for In Vivo Transduction

高密度重组腺相关病毒颗粒是体内转导的有效载体

阅读:5
作者:Qizhao Wang, Jenni Firrman, Zhongren Wu, Katie A Pokiniewski, C Alexander Valencia, Hairong Wang, Hongying Wei, Zhenjing Zhuang, LinShu Liu, Stephanie L Wunder, Mario P S Chin, Ruian Xu, Yong Diao, Biao Dong, Weidong Xiao

Abstract

Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed, heavier particles found in rAAV preparations have traditionally been ignored due to their reported low in vitro transduction efficiency. In this study, the biological properties of regular and high-density rAAV serotype 8 vectors, rAAVRD and rAAVHD, were systemically compared. Results demonstrated that both rAAVRD and rAAVHD exhibited similar DNA packaging profiles, while rAAVHD capsids contained fewer VP1 and VP2 proteins, indicating that the rAAVHD particles contained a higher DNA/protein ratio than that of rAAVRD particles. Dynamic light scattering and transmission electron microscopy data revealed that the diameter of rAAVHD was smaller than that of rAAVRD. In vitro, rAAVHD was two- to fourfold less efficient in transduction compared with rAAVRD. However, the transduction performance of rAAVHD and rAAVRD was similar in vivo. No significant difference in neutralizing antibody formation against rAAVRD and rAAVHD was observed, suggesting that the surface epitopes of rAAVRD and rAAVHD are congruent. In summary, the results of this study demonstrate that rAAVRD and rAAVHD are equally competent for in vivo transduction, despite their difference in vitro. Therefore, the use of rAAVHD vectors in human gene therapy should be further evaluated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。