Epimedin A inhibits the PI3K/AKT/NF-κB signalling axis and osteoclast differentiation by negatively regulating TRAF6 expression

Epimedin A 通过负向调节 TRAF6 表达来抑制 PI3K/AKT/NF-κB 信号轴和破骨细胞分化

阅读:4
作者:Jun Li, Jia J Wei, Cen H Wu, Tao Zou, Hong Zhao, Tian Q Huo, Cheng J Wei, Ting Yang

Background

Epimedin A (EA) has been shown to suppress extensive osteoclastogenesis and bone resorption, but the effects of EA remain incompletely understood. The

Conclusions

The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.

Methods

Rats were randomly assigned to the sham operation or ovariectomy group, and alendronate was used for the positive control group. The therapeutic effect of EA on osteoporosis was systematically analysed by measuring bone mineral density and bone biomechanical properties. In vitro, RAW264.7 cells were treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) to induce osteoclast differentiation. Cell viability assays, tartrate-resistant acid phosphatase (TRAP) staining, and immunofluorescence were used to elucidate the effects of EA on osteoclastogenesis. In addition, the expression of bone differentiation-related proteins or genes was evaluated using Western blot analysis or quantitative polymerase chain reaction (PCR), respectively.

Results

After 3 months of oral EA intervention, ovariectomized rats exhibited increased bone density, relative bone volume, trabecular thickness, and trabecular number, as well as reduced trabecular separation. EA dose-dependently normalized bone density and trabecular microarchitecture in the ovariectomized rats. Additionally, EA inhibited the expression of TRAP and NFATc1 in the ovariectomized rats. Moreover, the in vitro results indicated that EA inhibits osteoclast differentiation by suppressing the TRAF6/PI3K/AKT/NF-κB pathway. Further studies revealed that the effect on osteoclast differentiation, which was originally inhibited by EA, was reversed when the TRAF6 gene was overexpressed. Conclusions: The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。