Nanoparticle-mediated genome editing in single-cell embryos via peptide nucleic acids

通过肽核酸在单细胞胚胎中纳米粒子介导的基因组编辑

阅读:6
作者:Rachael Putman, Adele S Ricciardi, Kelly E W Carufe, Elias Quijano, Raman Bahal, Peter M Glazer, W Mark Saltzman

Abstract

Through preimplantation genetic diagnosis, genetic diseases can be detected during the early stages of embryogenesis, but effective treatments for many of these disorders are lacking. Gene editing could allow for correction of the underlying mutation during embryogenesis to prevent disease pathogenesis or even provide a cure. Here, we demonstrate that administration of peptide nucleic acids and single-stranded donor DNA oligonucleotides encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to single-cell embryos allows for editing of an eGFP-beta globin fusion transgene. Blastocysts from treated embryos exhibit high levels of editing (~94%), normal physiological development, normal morphology, and no detected off-target genomic effects. Treated embryos reimplanted to surrogate moms show normal growth without gross developmental abnormalities and with no identified off-target effects. Mice from reimplanted embryos consistently show editing, characterized by mosaicism across multiple organs with some organ biopsies showing up to 100% editing. This proof-of-concept work demonstrates for the first time the use of peptide nucleic acid (PNA)/DNA nanoparticles as a means to achieve embryonic gene editing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。