Automated assessment of human engineered heart tissues using deep learning and template matching for segmentation and tracking

使用深度学习和模板匹配进行分割和跟踪,自动评估人体工程心脏组织

阅读:5
作者:José M Rivera-Arbeláez, Danjel Keekstra, Carla Cofiño-Fabres, Tom Boonen, Milica Dostanic, Simone A Ten Den, Kim Vermeul, Massimo Mastrangeli, Albert van den Berg, Loes I Segerink, Marcelo C Ribeiro, Nicola Strisciuglio, Robert Passier

Abstract

The high rate of drug withdrawal from the market due to cardiovascular toxicity or lack of efficacy, the economic burden, and extremely long time before a compound reaches the market, have increased the relevance of human in vitro models like human (patient-derived) pluripotent stem cell (hPSC)-derived engineered heart tissues (EHTs) for the evaluation of the efficacy and toxicity of compounds at the early phase in the drug development pipeline. Consequently, the EHT contractile properties are highly relevant parameters for the analysis of cardiotoxicity, disease phenotype, and longitudinal measurements of cardiac function over time. In this study, we developed and validated the software HAARTA (Highly Accurate, Automatic and Robust Tracking Algorithm), which automatically analyzes contractile properties of EHTs by segmenting and tracking brightfield videos, using deep learning and template matching with sub-pixel precision. We demonstrate the robustness, accuracy, and computational efficiency of the software by comparing it to the state-of-the-art method (MUSCLEMOTION), and by testing it with a data set of EHTs from three different hPSC lines. HAARTA will facilitate standardized analysis of contractile properties of EHTs, which will be beneficial for in vitro drug screening and longitudinal measurements of cardiac function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。