Synergistic ferroptosis-starvation therapy for bladder cancer based on hyaluronic acid modified metal-organic frameworks

基于透明质酸修饰金属有机骨架的膀胱癌协同铁死亡饥饿疗法

阅读:5
作者:Yu Wang, Kunfeng Xie, Wei Chen, Yunze Fang, Qixin Mo, Henghui Zhang, Xinlei Zhao, Dongqing Li, Wanlong Tan, Peng Zhao, Fei Li

Abstract

Bladder cancer (BCa) is one of the most common malignancies of the urinary tract. Metastasis and recurrence of BCa are the leading causes of poor prognosis, and only a few patients can benefit from current first-line treatments such as chemotherapy and immunotherapy. It is urgent to develop more effective therapeutic method with low side effects. Here, a cascade nanoreactor, ZIF-8/PdCuAu/GOx@HA (ZPG@H), is proposed for starvation therapy and ferroptosis of BCa. The ZPG@H nanoreactor was constructed by co-encapsulation of PdCuAu nanoparticles and glucose oxidase into zeolitic imidazolate framework-8 (ZIF-8) modified by hyaluronic acid. The vitro results indicated that ZPG@H enhanced intracellular reactive oxygen species levels and reduced mitochondrial depolarization in the tumor microenvironment. Therefore, the integrated advantages of starvation therapy and chemodynamic therapy endow ZPG@H with a perfect ferroptosis inducing ability. This effectiveness, combined with its excellent biocompatibility and biosafety, means that ZPG@H could make a critical contribution to the development of novel BCa treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。