ANTENNA, a Multi-Rank, Multi-Layered Recommender System for Inferring Reliable Drug-Gene-Disease Associations: Repurposing Diazoxide as a Targeted Anti-Cancer Therapy

ANTENNA,一种用于推断可靠药物-基因-疾病关联的多级、多层推荐系统:将二氮嗪重新用于靶向抗癌疗法

阅读:5
作者:Annie Wang, Hansaim Lim, Shu-Yuan Cheng, Lei Xie

Abstract

Existing drug discovery processes follow a reductionist model of "one-drug-one-gene-one-disease," which is inadequate to tackle complex diseases involving multiple malfunctioned genes. The availability of big omics data offers opportunities to transform drug discovery process into a new paradigm of systems pharmacology that focuses on designing drugs to target molecular interaction networks instead of a single gene. Here, we develop a reliable multi-rank, multi-layered recommender system, ANTENNA, to mine large-scale chemical genomics and disease association data for prediction of novel drug-gene-disease associations. ANTENNA integrates a novel tri-factorization based dual-regularized weighted and imputed One Class Collaborative Filtering (OCCF) algorithm, tREMAP, with a statistical framework based on Random Walk with Restart and assess the reliability of specific predictions. In the benchmark, tREMAP clearly outperforms the single-rank OCCF. We apply ANTENNA to a real-world problem: repurposing old drugs for new clinical indications without effective treatments. We discover that FDA-approved drug diazoxide can inhibit multiple kinase genes responsible for many diseases including cancer and kill triple negative breast cancer (TNBC) cells efficiently [Formula: see text]. TNBC is a deadly disease without effective targeted therapies. Our finding demonstrates the power of big data analytics in drug discovery and developing a targeted therapy for TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。