miR-106a-5p inhibits the proliferation and migration of astrocytoma cells and promotes apoptosis by targeting FASTK

miR-106a-5p通过靶向FASTK抑制星形细胞瘤细胞增殖、迁移并促进细胞凋亡

阅读:5
作者:Feng Zhi, Guangxin Zhou, Naiyuan Shao, Xiwei Xia, Yimin Shi, Qiang Wang, Yi Zhang, Rong Wang, Lian Xue, Suinuan Wang, Sujia Wu, Ya Peng, Yilin Yang

Abstract

Astrocytomas are common malignant intracranial tumors that comprise the majority of adult primary central nervous system tumors. MicroRNAs (miRNAs) are small, non-coding RNAs (20-24 nucleotides) that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In our previous studies, we found that the downregulation of miR-106a-5p in astrocytomas is associated with poor prognosis. However, its specific gene target(s) and underlying functional mechanism(s) in astrocytomas remain unclear. In this study, we used mRNA microarray experiments to measure global mRNA expression in the presence of increased or decreased miR-106a-5p levels. We then performed bioinformatics analysis based on multiple target prediction algorithms to obtain candidate target genes that were further validated by computational predictions, western blot analysis, quantitative real-time PCR, and the luciferase reporter assay. Fas-activated serine/threonine kinase (FASTK) was identified as a direct target of miR-106a-5p. In human astrocytomas, miR-106a-5p is downregulated and negatively associated with clinical staging, whereas FASTK is upregulated and positively associated with advanced clinical stages, at both the protein and mRNA levels. Furthermore, Kaplan-Meier analysis revealed that the reduced expression of miR-106a-5p or the increased expression of FASTK is significantly associated with poor survival outcome. These results further supported the finding that FASTK is a direct target gene of miR-106a-5p. Next, we explored the function of miR-106a-5p and FASTK during astrocytoma progression. Through gain-of-function and loss-of-function studies, we demonstrated that miR-106a-5p can significantly inhibit cell proliferation and migration and can promote cell apoptosis in vitro. The knockdown of FASTK induced similar effects on astrocytoma cells as those induced by the overexpression of miR-106a-5p. These observations suggest that miR-106a-5p functions as a tumor suppressor during the development of astrocytomas by targeting FASTK.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。