Large magnetoelectric effects mediated by electric-field-driven nanoscale phase transformations in sputtered (nanoparticulate) and electrochemically dealloyed (nanoporous) Fe-Cu films

由电场驱动的溅射(纳米颗粒)和电化学脱合金(纳米多孔)Fe-Cu 薄膜中的纳米相变引起的大磁电效应

阅读:5
作者:Shauna Robbennolt, Alberto Quintana, Eva Pellicer, Jordi Sort

Abstract

Large magnetoelectric effects are observed in as-sputtered (nanoparticulate-like) and electrochemically dealloyed (nanoporous) 200 nm thick Fe-Cu films. Application of positive voltages decreases both the saturation magnetization (MS) and coercivity (HC) of the films, while negative voltages cause the reverse effect (increase of MS and HC). The relative variations are as high as 20% for MS and beyond 100% for HC, both for the as-sputtered and dealloyed states. These changes in magnetic properties are caused by controlled and reversible electric-field-driven nanoscale phase transformations between face-centered cubic (fcc) and body-centered cubic (bcc) structures. These phase transitions are in turn due to selective redox reactions induced by the applied voltage, which can be regarded as a "magnetoionic effect." The controlled tuning of HC and MS with the moderate values of applied voltage, together with the sustainable composition of the investigated alloys (not containing noble metals, as opposed to many previous works on magnetoelectric effects in thin films), pave the way towards the implementation of magnetic and spintronic devices with enhanced energy efficiency and functionalities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。