Mutations in non-acid patch residues disrupt H2A.Z's association with chromatin through multiple mechanisms

非酸性斑块残基的突变通过多种机制破坏了 H2A.Z 与染色质的结合

阅读:9
作者:Thomas J Wood, Angela Thistlethwaite, Michael R Harris, Simon C Lovell, Catherine B Millar

Abstract

The incorporation of histone variants into nucleosomes is a critical mechanism for regulating essential DNA-templated processes and for establishing distinct chromatin architectures with specialised functions. H2A.Z is an evolutionarily conserved H2A variant that has diverse roles in transcriptional regulation, heterochromatin boundary definition, chromosome stability and DNA repair. The H2A.Z C-terminus diverges in sequence from canonical H2A and imparts unique functions to H2A.Z in the yeast S. cerevisiae. Although mediated in part through the acid patch-containing M6 region, many molecular determinants of this divergent structure-function relationship remain unclear. Here, by using an unbiased random mutagenesis screen of H2A.Z alleles, we identify point mutations in the C-terminus outside of the M6 region that disrupt the normal function of H2A.Z in response to cytotoxic stress. These functional defects correlate with reduced chromatin association, which we attribute to reduced physical stability within chromatin, but also to altered interactions with the SWR and INO80 chromatin remodeling complexes. Together with experimental data, computational modelling of these residue changes in the context of protein structure suggests the importance of C-terminal domain integrity and configuration for maintaining the level of H2A.Z in nucleosomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。