Probe-Based Confocal Laser Endomicroscopy for Imaging TRAIL-Expressing Mesenchymal Stem Cells to Monitor Colon Xenograft Tumors In Vivo

基于探针的共聚焦激光内窥镜成像表达 TRAIL 的间充质干细胞以监测体内结肠异种移植肿瘤

阅读:5
作者:Zhen Zhang, Ming Li, Feixue Chen, Lixiang Li, Jun Liu, Zhen Li, Rui Ji, Xiuli Zuo, Yanqing Li

Conclusion

The pCLE results indicated that endomicroscopy could effectively quantify injected MSCs that homed to subcutaneous xenograft tumor sites in vivo and correlated well with the therapeutic effects of the TRAIL gene. By applying pCLE for the in vivo monitoring of cellular trafficking, stem cell-based anticancer gene therapeutic approaches might be feasible and attractive options for individualized clinical treatments.

Methods

Isolated BALB/c nu/nu mice MSCs (MSCs) were characterized and engineered to co-express the TRAIL and enhanced green fluorescent protein (EGFP) genes. The number of MSCs co-expressing EGFP and TRAIL (TRAIL-MSCs) at tumor sites was quantified with pCLE in vivo, while their presence was confirmed using immunofluorescence (IF) and quantitative polymerase chain reaction (qPCR). The therapeutic effects of TRAIL-MSCs were evaluated by measuring the volumes and weights of subcutaneous HT29-derived xenograft tumors.

Results

Intravital imaging of the subcutaneous xenograft tumors revealed that BALB/c mice treated with TRAIL-MSCs exhibited specific cellular signals, whereas no specific signals were observed in the control mice. The findings from the pCLE images were consistent with the IF and qPCR results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。