An Energetic and Topological Approach to Understanding the Interplay of Noncovalent Interactions in a Series of Crystalline Spiropyrrolizine Compounds

利用能量和拓扑方法理解一系列结晶螺吡咯烷化合物中非共价相互作用

阅读:5
作者:Dolma Tsering, Pratik Dey, Kamal K Kapoor, Saikat Kumar Seth

Abstract

Synthesis of quinoline-containing spiropyrrolizine was achieved via a 1,3-dipolar cycloaddition reaction of azomethine ylide (generated in situ from ninhydrin and l-proline) and (E)-2-styrylquinoline. The synthesized compounds were characterized by 1H NMR, 13C NMR, HRMS, and single-crystal XRD analysis. The XRD data revealed that the solid-state structures of the compounds belong to the monoclinic system of the space group P21/c and are stabilized through various weak noncovalent interactions such as C-H···O, C-H···π, and π···π interactions. The noncovalent interactions are characterized and quantified through Hirshfeld surface analysis. Moreover, the interaction energies of the intermolecular noncovalent interactions are calculated through PIXEL calculation. The PIXEL calculation provides precise interaction energy with an energy decomposition scheme. Energy Framework calculations have also been performed to delve deeper into understanding the intermolecular interactions. The intermolecular interactions are further characterized using Bader's theory of "atoms in molecules" (QTAIM) and the "noncovalent" (NCI) interaction plot index. The nature and strength of noncovalent interactions are analyzed from the topological parameters at (3, -1) bond critical points (BCPs).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。